HoTech HyperStar Laser Collimator - 14" # HLC-140

Our #: PALC-HT-HLC-140
Mfg #: HLC-140
Our Price: $575.00
See shipping choices & costs

Your card isn't charged until your order ships

More info

Your credit card or Paypal account will not be charged when you place your pre/back order. However, your card issuer will place an 'authorization hold' (aka 'pending charge') on your card which reduces your credit limit. For Paypal, funds may be debited from your account based on your funding source. However, we will not charge your card or take the money from Paypal until the order is ready to ship.

Free shipping for this item in the US
More Info

Contiguous US Customers:
All items we sell ship for free within the Contiguous US. Shipping will be via the cheapest shipping method which will vary depending on the items in your order. During checkout, you may also be shown other optional faster shipping choices.

US Customers in Hawaii and Alaska:
Free shipping applies to almost all products. A few large telescopes and mounts are excluded from this free shipping offer. For these items, please contact us to obtain a shipping quote before you check out using the online shopping cart.

International Customers:
Free shipping does not apply to international orders. During check-out, you will be presented with several shipping choices and costs. However, the export of some items may be restricted outside the US due to size or manufacturer restrictions.

Back-order
Availability: No ETA available from the manufacturer at this time

Product Details

Voted "2016 Star Product" by Astronomy Magazine!

Introducing the fast and precision laser collimator for HyperStar telescopes - This patented collimator elevates the HyperStar collimation into a new dimension.

  • Accurate collimation without using a star.
  • Collimate indoor at final view setting without taking up your precious observing time.
  • Achieve complete optical train alignment using one device.

1. Accurate Collimation without using a Star

In order to achieve an accurate star collimation, normally the amateur astronomer requires good seeing conditions with no cloud, no wind, stable temperature, no light pollution, a well-aligned telescope mount tracking system, telescope optical tube assemble (OTA) thermal equilibrium, and a good visible magnitude star. The visual quality of the referencing star is greatly affected by the prescribed factors most of which are beyond the astronomer's control as you can see in the photo. Adjusting the collimation is a guessing game where you move between front and the back of the telescope, adjusting the corresponding alignment screw and holding your breath as you peep through a high magnification eyepiece referencing the concentricity of the unstable defocused image. This can be an incredibly frustrating experience.

An artificial star can never simulate a real star because it is impossible to collimate with the telescope focus set at infinity. After artificial star collimation, you will need to adjust your focus back to infinity to view a real star by moving the primary mirror to a different focal position. The distance the primary mirror has been adjusted can accumulate mechanical tolerance errors. For some of the mass produced SCTs, the "sticky baffle" on the primary mirror focusing mechanism may also cause mirror-flop. If a mirror-flop has occurred, it will affect the alignment position which in turn will render the collimation useless. Ideally, It is best to collimate your optics at the same viewing focusing position without major optical displacements to correspond to the final view setting. The HyperStar Laser Collimator can accomplish this task without all the possible accumulated errors.

2. Collimate Within Focal Distance From Your Telescope

The HyperStar Laser Collimator does not require long distances to achieve high-accuracy collimation. Utilizing the installed flat mirror at the focal point (imaging sensor location), the collimator lasers double-passes the optical train and magnifies the alignment errors to a higher accuracy level. In addition, it also cuts the collimating distance in half achieving near-field alignment process. The collimator is stationed within your telescope's focal length directly in front of your telescope. Setting up for collimation, you will be standing between the telescope and the collimator aiming both the telescope and the collimator at each other. Then you will adjust the HyperStar collimation knobs to bring the returning lasers on the same track. This is a very convenient one-man-operation collimation task.


3. Complete Final Optical Train Alignment with one device

The HyperStar Laser Collimator identifies and assists the user to align the following parameters:

  • Corrects the optical axial tilt between the HyperStar focal plane and the primary optical axis. This process keeps the focal plane orthogonal to the primary optical axis so the captured image will be in-focus from corner to corner.
  • Corrects the centration error between the HyperStar optical axis and the primary optical axis. This process centers the focal point to the precise center of the imaging sensor for maximum collimated FOV capture.

4. At a Fraction of the Cost of the Wavefront Interferometer Technology

The state-of-the-art advanced laser optical alignment technology used in the HyperStar Laser Collimator achieves the same rough alignment function of a costly large aperture interferometer commonly use in high-energy labs at a fraction of its cost.

The HyperStar Laser Collimator uses three collimated lasers, evenly spaced apart, to sample large aperture optical elements in your telescope. The three parallel laser beams completely simulate the light path (flat-wavefront) from a distant star and pass through the entire telescope’s optical elements and reflect back to its target for a complete and accurate double-pass diagnostic reading of your telescope optical alignment. This innovative collimation technique and technology enables the amateur astronomer achieving far-field collimation as a near-field process

5. Precision CNC Machined Panel and Components

This beautifully designed instrument is precision machined from a solid block of aerospace grade aluminum. It is then hardened and anodized to keep the entire mounted laser system thermally stable allowing you to achieve accurate collimation. The rigid, ultra thin profile, and light-weight design makes the unit portable and simple to setup and use.

6. Upgrade Kit Available for ACT Laser Collimator Owners

Users who have already purchased the Advanced CT Laser Collimator for SCTs before can purchase the corresponding Upgrade Kit without purchasing this entire laser unit. The Upgrade Kit includes the proper sized HyperStar adapter and the newly developed dual-sided reflector mirror for your convenience.

Laser Specification:

  • Output Power: Class II, 1mW
  • Wavelength: 635nm and 650nm
  • Alignment Lasers: 170mm diameter spaced apart
  • Crosshair Laser: 90 deg. divergent optic
  • Power Supply: One CR123, 3V Lithium battery

Package Includes:

  • (1) Advanced CT Laser Collimator
  • (1) 14" HyperStar Reflector Mirror Adapter
  • (1) Fine Adjustment Stage
  • (1) High-accuracy Dual-Sided Reflector Mirror
  • (1) CR123, 3V lithium battery
  • (1) Premium Carrying Case with Manual

Additional Information

Please Note: The information below pertains to the Hotech Advanced CT Laser Collimator for SCTs. While is this not entirely relevant to this new HyperStar Collimator, there is still a lot of useful information you can glean. We will update this section as more relevant information is made available by Hotech.

SCT Introduction (Video 1): Setup and concept of the Advanced CT Laser Collimator

SCT Collimation (Video 2): All optical axis collimation on a 9.25" Celstron EdgeHD

 

- Read about Andrew Cooper's experience with this product on his blog.
- Read Rod Mollise's review of this product on his blog.
- Instruction Manual
- Laser Safety Precaution

Other Information

  • Country of Manufacture: China